BizHawk/BizHawk.Emulation.Cores/Consoles/Atari/A7800Hawk/Pokey.cs

316 lines
7.7 KiB
C#
Raw Normal View History

2017-08-25 14:21:10 +00:00
using System;
using BizHawk.Emulation.Common;
using BizHawk.Common.NumberExtensions;
using BizHawk.Common;
namespace BizHawk.Emulation.Cores.Atari.A7800Hawk
{
// emualtes pokey sound chip
// note: A7800 implementation is used only for sound
// potentiometers, keyboard, and IRQs are not used in this context
/*
* Regs 0,2,4,6: Frequency control (divider = value + 1)
* Regs 1,3,5,7: Channel control (Bits 0-3 = volume) (bits 4 - 7 control clocking)
* Reg 8: Control register
*
* Reg A: Random number generator
*
* The registers are write only, except for the RNG none of the things that would return reads are connected
* for now return FF
*/
public class Pokey
{
public A7800Hawk Core { get; set; }
2017-08-26 16:46:59 +00:00
public readonly short[] LocalAudioCycles = new short[2000];
public int AudioClocks;
// state variables
2017-08-25 14:21:10 +00:00
public byte[] Regs = new byte[16];
2017-08-26 16:46:59 +00:00
public int poly4, poly5, poly9, poly17;
public int[] ch_div = new int[4];
public int[] inc_ch = new int[4];
public bool[] ch_out = new bool[4];
public bool[] ch_src = new bool[4];
public int[] ch_vol = new int[4];
public bool high_pass_1;
public bool high_pass_2;
2017-08-25 14:21:10 +00:00
2017-08-26 16:46:59 +00:00
// these are derived values and do not need to be save-stated
public bool[] clock_ch = new bool[4];
public int bit_xor;
2017-08-25 14:21:10 +00:00
public Pokey()
{
}
2017-08-26 16:46:59 +00:00
public void sample()
{
LocalAudioCycles[AudioClocks] += (short)(ch_vol[0] + ch_vol[1] + ch_vol[2] + ch_vol[3]);
AudioClocks++;
}
public void GetSamples(short[] samples)
{
if (AudioClocks > 0)
{
var samples31Khz = new short[AudioClocks]; // mono
for (int i = 0; i < AudioClocks; i++)
{
samples31Khz[i] = LocalAudioCycles[i];
LocalAudioCycles[i] = 0;
}
// convert from 31khz to 44khz
for (var i = 0; i < samples.Length / 2; i++)
{
samples[i * 2] = samples31Khz[(int)(((double)samples31Khz.Length / (double)(samples.Length / 2)) * i)];
samples[(i * 2) + 1] = samples[i * 2];
}
}
AudioClocks = 0;
}
2017-08-25 14:21:10 +00:00
public byte ReadReg(int reg)
{
byte ret = 0xFF;
2017-08-26 16:46:59 +00:00
if (reg==0xA)
{
ret = (byte)(poly17 >> 9);
}
2017-08-25 14:21:10 +00:00
return ret;
}
public void WriteReg(int reg, byte value)
{
Regs[reg] = value;
2017-08-25 15:28:19 +00:00
2017-08-26 16:46:59 +00:00
// this condition resets poly counters and holds them in place
if ((Regs[0xF] & 3) == 0)
{
poly4 = 0xF;
poly5 = 0x1F;
poly17 = 0x1FFFF;
}
2017-08-25 14:21:10 +00:00
}
public void Tick()
{
2017-08-26 16:46:59 +00:00
// clock the 4-5-(9 or 17) bit poly counters
// NOTE: These might not be the exact poly implementation, I just picked a maximal one from wikipedia
// poly 4 and 5 are known to result in:
// poly4 output: 000011101100101
// poly5 output: 1101001100000111001000101011110
if ((Regs[0xF] & 3) != 0)
{
bit_xor = ((poly4 >> 3) ^ (poly4 >> 2) ^ poly4) & 1;
poly4 = (poly4 >> 1) | (bit_xor << 3);
2017-08-25 14:21:10 +00:00
2017-08-26 16:46:59 +00:00
bit_xor = ((poly5 >> 4) ^ (poly5 >> 2) ^ poly5) & 1;
poly5 = (poly5 >> 1) | (bit_xor << 4);
if (Regs[8].Bit(7))
{
// clock only 9 bits of the 17 bit poly
poly9 = poly17 >> 8;
bit_xor = ((poly9 >> 8) ^ (poly9 >> 4) ^ poly9) & 1;
poly9 = (poly9 >> 1) | (bit_xor << 8);
poly17 = (poly17 & 0xFF) | (poly9 << 8);
}
else
{
// clock the whole 17 bit poly
bit_xor = ((poly17 >> 16) ^ (poly17 >> 13) ^ poly17) & 1;
poly17 = (poly17 >> 1) | (bit_xor << 16);
}
}
clock_ch[0] = clock_ch[1] = clock_ch[2] = clock_ch[3] = false;
// now that we have the poly counters, check which channels to clock
if (Regs[8].Bit(6))
{
clock_ch[0] = true;
clock_ch[2] = true;
}
else
{
inc_ch[0]++;
inc_ch[2]++;
if (Regs[8].Bit(0))
{
if (inc_ch[0] >= 114) { inc_ch[0] = 0; clock_ch[0] = true; }
if (inc_ch[2] >= 114) { inc_ch[2] = 0; clock_ch[2] = true; }
}
else
{
if (inc_ch[0] >= 28) { inc_ch[0] = 0; clock_ch[0] = true; }
if (inc_ch[2] >= 28) { inc_ch[2] = 0; clock_ch[2] = true; }
}
}
if (Regs[8].Bit(4))
{
if (clock_ch[0]) { clock_ch[1] = true; }
}
else
{
inc_ch[1]++;
if (Regs[8].Bit(0))
{
if (inc_ch[1] >= 114) { inc_ch[1] = 0; clock_ch[1] = true; }
}
else
{
if (inc_ch[1] >= 28) { inc_ch[1] = 0; clock_ch[1] = true; }
}
}
if (Regs[8].Bit(3))
{
if (clock_ch[2]) { clock_ch[3] = true; }
}
else
{
inc_ch[3]++;
if (Regs[8].Bit(0))
{
if (inc_ch[3] >= 114) { inc_ch[3] = 0; clock_ch[3] = true; }
}
else
{
if (inc_ch[3] >= 28) { inc_ch[3] = 0; clock_ch[3] = true; }
}
}
// first update the high pass filter latch
if (clock_ch[2] && Regs[8].Bit(2)) { high_pass_1 = ch_out[0]; }
if (clock_ch[3] && Regs[8].Bit(1)) { high_pass_2 = ch_out[1]; }
// now we know what channels to clock, execute the cycles
for (int i = 0; i < 4; i++) {
if (clock_ch[i])
{
ch_div[i]++;
if (ch_div[i] == (Regs[i * 2] + 1))
{
ch_div[i] = 0;
// select the next source based on the channel control register
if (Regs[i * 2 + 1].Bit(4))
{
// forced output always on (used with volume modulation)
ch_out[i] = true;
}
else if ((Regs[i * 2 + 1] & 0xF0) == 0)
{
// 17 bit poly then 5 bit poly
if (ch_src[i])
{
ch_out[i] = poly5.Bit(4);
}
else
{
ch_out[i] = poly5.Bit(16);
}
ch_src[i] = !ch_src[i];
}
else if (((Regs[i * 2 + 1] & 0xF0) == 0x20) || ((Regs[i * 2 + 1] & 0xF0) == 0x60))
{
// 5 bit poly
ch_out[i] = poly5.Bit(4);
}
else if ((Regs[i * 2 + 1] & 0xF0) == 0x40)
{
// 4 bit poly then 5 bit poly
if (ch_src[i])
{
ch_out[i] = poly5.Bit(4);
}
else
{
ch_out[i] = poly4.Bit(3);
}
ch_src[i] = !ch_src[i];
}
else if ((Regs[i * 2 + 1] & 0xF0) == 0x80)
{
// 17 bit poly
if (ch_src[i])
{
ch_out[i] = poly17.Bit(16);
}
ch_src[i] = !ch_src[i];
}
else if ((Regs[i * 2 + 1] & 0xF0) == 0xA0)
{
// tone
ch_out[i] = !ch_out[i];
}
else if ((Regs[i * 2 + 1] & 0xF0) == 0xC0)
{
// 4 bit poly
if (ch_src[i])
{
ch_out[i] = poly4.Bit(3);
}
ch_src[i] = !ch_src[i];
}
// for channels 1 and 2, an optional high pass filter exists
// the filter is just a flip flop and xor combo
if ((i == 0 && Regs[8].Bit(2)) || (i == 1 && Regs[8].Bit(1)))
{
if (i == 0) { ch_vol[0] = (ch_out[0] ^ high_pass_1) ? (Regs[1] & 0xF) : 0; }
if (i == 1) { ch_vol[1] = (ch_out[1] ^ high_pass_2) ? (Regs[3] & 0xF) : 0; }
}
else
{
ch_vol[i] = (ch_out[i] ? (Regs[i * 2 + 1] & 0xF) : 0) * 70;
}
}
}
}
2017-08-25 14:21:10 +00:00
}
public void Reset()
{
Regs = new byte[16];
2017-08-26 16:46:59 +00:00
poly4 = 0xF;
poly5 = 0x1F;
poly17 = 0x1FFFF;
2017-08-25 14:21:10 +00:00
}
public void SyncState(Serializer ser)
{
ser.BeginSection("Pokey");
ser.Sync("Regs", ref Regs, false);
2017-08-26 16:46:59 +00:00
ser.Sync("poly4", ref poly4);
ser.Sync("poly5", ref poly5);
ser.Sync("poly9", ref poly9);
ser.Sync("poly17", ref poly17);
ser.Sync("ch_div", ref ch_div, false);
ser.Sync("inc_ch", ref inc_ch, false);
ser.Sync("ch_out", ref ch_out, false);
ser.Sync("ch_src", ref ch_src, false);
ser.Sync("ch_vol", ref ch_vol, false);
ser.Sync("high_pass_1", ref high_pass_1);
ser.Sync("high_pass_2", ref high_pass_2);
ser.EndSection();
2017-08-25 14:21:10 +00:00
}
}
}